Algebraic cycles on the generic abelian fourfold with polarization of type ( 1 , 2 , 2 , 2 )
نویسنده
چکیده
In this paper we construct a non-trivial element in the higher Griffiths group Grif f 3,2 for the generic abelian fourfold A 4 with polarization of type (1, 2, 2, 2). The key idea is to use that A 4 can be realized as a generalized Prym variety and for this reason contains in a natural way some curves i.e. dimension 1 cycles.
منابع مشابه
Heisenberg-invariant Kummer Surfaces Ii
is the closure of the locus parametrizing H22-invariant quartics with 16 skew lines. The smooth surfaces of this type are parametrized by a non-empty open set N s of N . These surfaces are Kummer surfaces associated to abelian surfaces with a (1,3)–polarization. The action of the Heisenberg group on the Kummer surface corresponds to a level-2 structure on the abelian surface. If A is an abelian...
متن کامل0 Line bundles of type ( 1 , . . . , 1 , 2 , . . . , 2 , 4 , . . . , 4 ) on Abelian Varieties
We show birationality of the morphism associated to line bundles L of type 4) on a generic g−dimensional abelian variety into its complete linear system such that h 0 (L) = 2 g. When g = 3, we describe the image of the abelian threefold and from the geometry of the moduli space SU C (2) in the linear system |2θ C |, we obtain analogous results in IP H 0 (L).
متن کاملDuality and Polarization Form for Abelian Anderson T-motives
We introduce the notion of duality for an abelian Anderson T-motive M . Main results of the paper (all M have N = 0): 1. Algebraic duality implies analytic duality (Theorem 4.4). Explicitly, this means that a Siegel matrix of the dual of a uniformizable M is the minus transposed of a Siegel matrix of M . 2. There is a 1 – 1 correspondence between pure T-motives of dimension r − 1 and rank r (al...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملFinite Subgroups of Algebraic Groups
0. Introduction 1105 1. Constructible families 1111 2. Genericity for finite subgroups 1116 3. Finite groups of Lie type 1119 4. Basic nonconcentration estimate 1122 5. Finite subgroups of abelian varieties 1126 6. Orders of conjugacy classes and centralizers 1127 7. Regular semisimple and unipotent elements 1129 8. Minimal unipotent elements 1134 9. Frobenius map 1140 10. Traces in the basic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009